Global movement of Happiness ladder with Machine learning in R

Introduction

This blog is about world happiness ladder using the world happiness report data sets (Helliwell et. al., 2024). The basic objective is to demonstrate the use of panel data which is quite distinct from cross-sectional or time series data.

Global happiness ladder

Cross-sectional happiness ladder for 2023

Fixed time, it is cross-sectional

Times series vs. panel data visualisation

Each line is a timeseries but together, it is panel data

Mean global happiness lalder

Cross-sectional mean happiness ladder for 2023

Time is fixed, cross-sectional

Times series vs. panel data visualisation

Each line is a timeseires but together, they are panel data

Factor analysis of panel global happiness ladder

Parallel analysis suggests that the number of factors =  4  and the number of components =  NA 

Loadings:
           MR1    MR2    MR4    MR3   
Happiness   0.810                     
GDP         0.899                     
Support     0.761                     
Life_Exp    0.882                     
Freedom            0.651              
Positive           0.775              
Corruption               -0.831       
Negative                         0.550
Year                             0.487
Generosity         0.440              
Regional                              

                 MR1   MR2   MR4   MR3
SS loadings    3.286 1.687 0.909 0.731
Proportion Var 0.299 0.153 0.083 0.066
Cumulative Var 0.299 0.452 0.535 0.601
Values
degree of freedom 17.00
Chi-sq 132.48
Chi-sq/df 7.79
Harmonic sample size 2298.31
Root Mean Square 0.02
Probability of the empirical chi-sq 0.00
Adjusted Root Mean Square 0.04
Empirical BIC 0.90
Sample size adjusted BIC 54.91
fit (SSresidual vs SSoriginal values) 0.90
fit applied to off diagonal elements 1.00
SD of the residuals 0.02
Number of factors extracted 4.00
Number of observations 2363.00
Value of the minimised function 0.16
chi-sq based on the objective function 369.96
p-value of observing the chi-sq 0.00
chi-sq based on the objective function/df 6.73
Null model 5.32
df for null model 55.00
chi-sq for null model 12542.24
chi-sq for null model/df 228.04
Tucker Lewis Index of factoring reliability 0.91
RMSE Approximation 0.09
RMSE Approximation-lower 0.09
RMSE Approximation-upper 0.10
RMSE Approximation-confidence interval 0.90
RMSE Approximation-BIC 237.91
RMSE Approximation-empirical BIC 291.92
Mean item complexity 1.58
Kaiser Meyer Olkin Measure of Sampling Adequacy 0.81
Bartlett Chi 12542.24
Barlett p-value 0.00
Barlett df 55.00
Barlett Chi/df 228.04
lavaan 0.6-18 ended normally after 117 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        24

                                                  Used       Total
  Number of observations                          2098        2363

Model Test User Model:
                                                      
  Test statistic                              2216.113
  Degrees of freedom                                31
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                             10727.135
  Degrees of freedom                                45
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.795
  Tucker-Lewis Index (TLI)                       0.703

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -15445.704
  Loglikelihood unrestricted model (H1)     -14337.648
                                                      
  Akaike (AIC)                               30939.408
  Bayesian (BIC)                             31074.978
  Sample-size adjusted Bayesian (SABIC)      30998.727

Root Mean Square Error of Approximation:

  RMSEA                                          0.183
  90 Percent confidence interval - lower         0.177
  90 Percent confidence interval - upper         0.190
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.110

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  MR1 =~                                              
    GDP               1.000                           
    Life_Exp          5.659    0.097   58.044    0.000
    Happiness         0.931    0.016   59.736    0.000
    Support           0.089    0.002   45.585    0.000
  MR2 =~                                              
    Positive          1.000                           
    Freedom           1.858    0.076   24.518    0.000
    Generosity        0.857    0.058   14.877    0.000
    Regional          7.995    1.138    7.026    0.000
  MR4 =~                                              
    Corruption        1.000                           
  MR3 =~                                              
    Year              1.000                           

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  MR1 ~~                                              
    MR2               0.036    0.002   15.240    0.000
    MR4              -0.078    0.005  -16.353    0.000
    MR3               0.553    0.121    4.589    0.000
  MR2 ~~                                              
    MR4              -0.007    0.000  -16.232    0.000
    MR3               0.084    0.009    9.636    0.000
  MR4 ~~                                              
    MR3              -0.086    0.020   -4.320    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .GDP               0.197    0.011   17.757    0.000
   .Life_Exp         12.638    0.506   24.994    0.000
   .Happiness         0.307    0.013   24.065    0.000
   .Support           0.006    0.000   28.956    0.000
   .Positive          0.007    0.000   26.406    0.000
   .Freedom           0.003    0.001    6.186    0.000
   .Generosity        0.023    0.001   31.520    0.000
   .Regional         10.537    0.327   32.245    0.000
   .Corruption        0.000                           
   .Year              0.000                           
    MR1               1.136    0.042   27.217    0.000
    MR2               0.005    0.000   14.435    0.000
    MR4               0.034    0.001   32.388    0.000
    MR3              24.675    0.762   32.388    0.000
x
npar 2.400000e+01
fmin 5.281489e-01
chisq 2.216113e+03
df 3.100000e+01
pvalue 0.000000e+00
baseline.chisq 1.072713e+04
baseline.df 4.500000e+01
baseline.pvalue 0.000000e+00
cfi 7.954423e-01
tli 7.030614e-01
nnfi 7.030614e-01
rfi 7.001121e-01
nfi 7.934106e-01
pnfi 5.465717e-01
ifi 7.957100e-01
rni 7.954423e-01
logl -1.544570e+04
unrestricted.logl -1.433765e+04
aic 3.093941e+04
bic 3.107498e+04
ntotal 2.098000e+03
bic2 3.099873e+04
rmsea 1.832962e-01
rmsea.ci.lower 1.768656e-01
rmsea.ci.upper 1.898093e-01
rmsea.ci.level 9.000000e-01
rmsea.pvalue 0.000000e+00
rmsea.close.h0 5.000000e-02
rmsea.notclose.pvalue 1.000000e+00
rmsea.notclose.h0 8.000000e-02
rmr 1.183338e+00
rmr_nomean 1.183338e+00
srmr 1.100957e-01
srmr_bentler 1.100957e-01
srmr_bentler_nomean 1.100957e-01
crmr 1.217154e-01
crmr_nomean 1.217154e-01
srmr_mplus 1.100957e-01
srmr_mplus_nomean 1.100957e-01
cn_05 4.358775e+01
cn_01 5.040973e+01
gfi 8.167185e-01
agfi 6.748232e-01
pgfi 4.603323e-01
mfi 5.940683e-01
ecvi 1.079177e+00
MR1 MR2
alpha 0.4741262 0.0705956
omega 0.8358631 0.0570646
omega2 0.8358631 0.0570646
omega3 0.8354815 0.0556176
avevar 0.7454058 0.0295963

The inter-connectivity between the latent variables and the various variables used to measure hapiiness.

References

Helliwell, J. F., Layard, R., Sachs, J. D., De Neve, J.-E., Aknin, L. B., & Wang, S. (Eds.). (2024). World Happiness Report 2024. University of Oxford: Wellbeing Research Centre.

Job Nmadu
Professor of Agricultural Economics and Dean, School of Agriculture and Agricultural Technology

Research interests are economic efficiencies of small scale farming and welfare effects of agricultural interventions.

Related

Next
Previous